USEFUL RELATIONSHIPS BETWEEN Keff, Bm2 and Bg2

The reactivity of a fissile system can be described by

$$k_{eff} = \frac{k_{\infty}}{1 + M^2 B_g^2}$$

where k_{eff} = effective multiplication constant

k co = multiplication constant for an infinite amount of the fissile material

 $\mathbf{B}_{\mathbf{S}}$ = geometrical buckling of the system

M = migration area of the neutrons (about 25 to 30 cm for H/fissile atom >20)

at critical k_{eff} = 1.0 and B_{m}^{2} = B_{g}^{2} , where

B. = material buckling of the fissile material, or

$$1 = \frac{k_{\infty}}{1 + M^2 B_m^2}$$

Substituting, we have:

$$k_{eff} = \frac{1 + M^2 B_m^2}{1 + M^2 B_g^2}$$

and we can determine the reactivity of a given system with a known geometry and material, or

$$B_{\rm m}^2 = \frac{k_{\rm eff}(1 + M^2 B_{\rm g}^2) - 1}{M^2}$$

where the geometry and the limiting keff is known and the material buckling is desired, or

$$B_g^2 = \frac{1}{M^2} \left[\frac{1 + M^2 B_m^2}{k_{eff}} - 1 \right]$$

where the limiting $k_{\mbox{eff}}$ and the material is known and the limiting geometry is desired.

These equations may be used for rough determinations of the desired parameters for simple geometrical shapes with no interaction.